
This week
■ Assignment 1 due Wednesday: you’ll have proved your

bare-metal mettle!
■ Lab 2:

■ do pre-lab reading!
■ lots of wiring — you need to

work efficiently

Goals for today
■ Pointers, pointers, and more pointers!
■ ARM addressing modes, translation to/from C
■ Details: volatile qualifier, bare-metal build

Memory
Memory is a linear sequence
of bytes

Addresses start at 0, go 
to 232-1 (32-bit architecture)

02000000016

10000000016
4 GB

512 MB

Memory as a linear sequence of indexed bytes

02
19
a0
e3
00
10
80
e5

04
00
9f
e5

20
00
20
20

		

		[8010]	

[800c]	

[8008]	

[8004]	
[8003]	
[8002]	
[8001]	
[8000]

e59f0004

[800c]		

[8008]	

[8004]	

[8000]

e3a01902
e5801000
20200020

Same memory,
 grouped into 4-byte words

Note little-endian byte ordering

 ldr r0, [r1]

 str r0, [r1]

Store is a misfit among ARM instructions —
operands are in order of src, dst
(reverse of all other instructions)

ARM load/store instructions

ASM and memory
At the assembly level, a 4-byte word could represent
■ an address,
■ an int,
■ 4 characters
■ an ARM instruction

The ldr/str instructions are agnostic to type:
assembly has no type system to guide or restrict us
on what we do with those words.

C pointer types
An address is a memory location, represented as an
unsigned int (because this is a 32-bit architecture).

A pointer is a variable that holds an address.

The “pointee” is the data stored at that address.

int	val	=	5;	
int*	ptr	=	&val;

0x0000810c 0x05 0x00 0x00 0x00

0x00008110 0x0c 0x81 0x00 0x00

C code address memory

Why Pointers?
Access specific memory locations like FSEL2	

Pointers can be used to reference elements of an array

Pointers allow for creating dynamic data structures at
runtime

Pointers can be used to efficiently share/pass references
without making copies of large data structures

Pointers are used in data structures to reference other
data structures

C Pointer Operations

int	val	=	5;	
int*	ptr	=	&val;

0x0000810c 0x05 0x00 0x00 0x00

0x00008110 0x0c 0x81 0x00 0x00

C Pointer Operations

int	val	=	5;	
int*	ptr	=	&val;

0x0000810c 0x05 0x00 0x00 0x00

0x00008110 0x0c 0x81 0x00 0x00

*ptr	=	7; 0x0000810c 0x07 0x00 0x00 0x00

0x00008110 0x0c 0x81 0x00 0x00

C Pointer Operations

int	val	=	5;	
int*	ptr	=	&val;

0x0000810c 0x05 0x00 0x00 0x00

0x00008110 0x0c 0x81 0x00 0x00

*ptr	=	7; 0x0000810c 0x07 0x00 0x00 0x00

0x00008110 0x0c 0x81 0x00 0x00

0x0000810c 0x07 0x00 0x00 0x00
0x00008110 0x0c 0x81 0x00 0x00
0x00008114 0x10 0x81 0x00 0x00

int**	dptr	=	&ptr;

C Pointer Operations

int	val	=	5;	
int*	ptr	=	&val;

0x0000810c 0x05 0x00 0x00 0x00

0x00008110 0x0c 0x81 0x00 0x00

*ptr	=	7; 0x0000810c 0x07 0x00 0x00 0x00

0x00008110 0x0c 0x81 0x00 0x00

0x0000810c 0x07 0x00 0x00 0x00
0x00008110 0x0c 0x81 0x00 0x00
0x00008114 0x10 0x81 0x00 0x00

int**	dptr	=	&ptr;

0x0000810c 0x07 0x00 0x00 0x00
0x00008110 0x00 0x00 0x00 0x00
0x00008114 0x10 0x81 0x00 0x00

*dptr	=	NULL;

C Pointer Operations

char a = ‘a’;
char b = ‘b’
char* ptr = &b;

0x0000810c ‘a’ ‘b’ 0x00 0x00

0x00008110 0x0d 0x81 0x00 0x00

0x61 0x62

C Pointer Operations

char a = ‘a’;
char b = ‘b’;
char* ptr = &b;

0x0000810c ‘a’ ‘b’ 0x00 0x00

0x00008110 0x0d 0x81 0x00 0x00

*ptr = ‘c’; 0x0000810c ‘a’ ‘c’ 0x00 0x00

0x00008110 0x0d 0x81 0x00 0x00

0x61 0x62

0x63

C Pointer Operations

char a = ‘a’;
char b = ‘b’
char* ptr = &b;

0x0000810c ‘a’ ‘b’ 0x00 0x00

0x00008110 0x0d 0x81 0x00 0x00

*ptr = ‘c’; 0x0000810c ‘a’ ‘c’ 0x00 0x00

0x00008110 0x0d 0x81 0x00 0x00

0x0000810c ‘a’ ‘c’ 0x00 0x00
0x00008110 0x0d 0x81 0x00 0x00
0x00008114 0x10 0x81 0x00 0x00

char**	dptr	=	&ptr;

0x61 0x62

0x63

C Pointer Operations

char a = ‘a’;
char b = ‘b’
char* ptr = &b;

0x0000810c ‘a’ ‘b’ 0x00 0x00

0x00008110 0x0d 0x81 0x00 0x00

*ptr = ‘c’; 0x0000810c ‘a’ ‘c’ 0x00 0x00

0x00008110 0x0c 0x81 0x00 0x00

0x0000810c ‘a’ ‘c’ 0x00 0x00
0x00008110 0x0d 0x81 0x00 0x00
0x00008114 0x10 0x81 0x00 0x00

char**	dptr	=	&ptr;

0x0000810c ‘a’ ‘c’ 0x00 0x00
0x00008110 0x00 0x00 0x00 0x00
0x00008114 0x10 0x81 0x00 0x00

*dptr	=	NULL;

0x61 0x62

0x63

C pointer types
C has a type system: tracks the type of each variable.

Operations required to respect the data type.
■ Can’t multiply int*’s, can’t deference an int

Distinguishes pointer variables by type of pointee
■ Dereferencing an int* is an int
■ Dereferencing a char* is a char

C arrays
An array allocates multiple instances of a type
contiguously in memory

char ab[2];
ab[0] = ‘a’;
ab[1] = ‘b’;

0x0000810c ‘a’ ‘b’

int ab[2];
ab[0] = ‘a’;
ab[1] = 9;

0x0000810c ‘a’ 0x00 0x00 0x00

0x00008110 0x09 0x00 0x00 0x00

0x61 0x62

0x61

Arrays and Pointers
You can assign an array to a pointer

int ab[2] = {5, 7};  
int* ptr = ab; // ptr = &(ab[0]);

Incrementing pointers advances address by size of type

ptr = ptr + 1; // now points to ab[1]

What does the assembly look like? 
What if ab is a char[2] and ptr is a char*?

Pointer basics: & *
int m, n, *p, *q;

p = &n;
*p = n; // same as prev line?

q = p;
*q = *p; // same as prev line?

p = &m, q = &n;
*p = *q;
m = n; // same as prev line?

 int n, arr[4], *p;

 p = arr;
 p = &arr[0]; // same as prev line?

 *p = 3;
 p[0] = 3; // same as prev line?

 n = *(arr + 1);
 n = arr[1]; // same as prev line?

Pointers and arrays

Fancier addressing modes
Preindex, non-updating
			
 ldr r0, [r1, #4] // constant displacement
 ldr r0, [r1, r2] // variable displacement
 ldr r0, [r1, r2, lsl #4] // scaled index

Preindex, writeback (update dst before use)
			
 ldr r0, [r1, #4]! // r1 pre-updated += 4
 ldr r0, [r1, r2]! // r1 pre-updated += r2
 ldr r0, [r1, r2, lsl #4]! // r1 pre-updated += r2 << 4

Postindex (update dst after use)
		
 ldr r0, [r1], #4 // r1 post-updated += 4
 ldr r0, [r1], r2 // r1 post-updated += r2
 ldr r0, [r1], r2, lsl #4 // r1 post-updated += r2 << 4

Fancier addressing modes
Preindex, non-updating
			
 ldr r0, [r1, #4] // constant displacement
 ldr r0, [r1, r2] // variable displacement
 ldr r0, [r1, r2, lsl #4] // scaled index

Preindex, writeback (update dst before use)
			
 ldr r0, [r1, #4]! // r1 pre-updated += 4
 ldr r0, [r1, r2]! // r1 pre-updated += r2
 ldr r0, [r1, r2, lsl #4]! // r1 pre-updated += r2 << 4

Postindex (update dst after use)
		
 ldr r0, [r1], #4 // r1 post-updated += 4
 ldr r0, [r1], r2 // r1 post-updated += r2
 ldr r0, [r1], r2, lsl #4 // r1 post-updated += r2 << 4

for (char* ptr = &ch; *ptr != 0; ++ptr) {}

for (char* ptr = &ch; *ptr != 0; ptr++) {}

C-strings

		char	*s	=	"Stanford";	
		char	arr[]	=	"University";	
		char	oldschool[]	=	{'L','e','l','a','n','d'};	
		char	buf[100];	
		char	*ptr;	

//	which	assignments	are	valid?	
1		ptr	=	s;						
2		ptr	=	arr;	
3		ptr	=	buf;	
4		arr	=	ptr;	
5		buf	=	oldschool;	

4c
65
6c
61
63
64
\0

616c654c
??\06463

C-strings

		char	*s	=	"Stanford";	
		char	arr[]	=	"University";	
		char	oldschool[]	=	{'L','e','l','a','n','d'};	
		char	buf[100];	
		char	*ptr;	

//	which	assignments	are	valid?	
1		ptr	=	s;						
2		ptr	=	arr;	
3		ptr	=	buf;	
4		arr	=	ptr;	
5		buf	=	oldschool;	

4c
65
6c
61
63
64
\0

616c654c
??\06463You cannot assign an

array to a pointer!

What does a typecast actually do?

Aside: why is this even allowed?
Casting between different types of pointers — perhaps plausible

Casting between pointers and int — sketchy

Casting between pointers and float — bizarre

		int	*p;	double	*q;	char	*s;	

		ch		=	*(char	*)p;	
		val	=	*(int	*)s;	
		val	=	*(int	*)q;	

Power of Types and Pointers
struct gpio {
 unsigned int fsel[6];
 unsigned int reservedA;
 unsigned int set[2];
 unsigned int reservedB;
 unsigned int clr[2];
 unsigned int reservedC;
 unsigned int lev[2];
};

volatile struct gpio *gpio = (struct gpio *)0x20200000;
gpio->fsel[0] = ...

Pointers: the fault in our *s
Pointers are ubiquitous in C, and inherently
dangerous. Be vigilant!

Q. For what reasons might a pointer be invalid?

Q. What is consequence of using an invalid
pointer?

C vs. Assembly

int	i,	j;	

i	=	1;	
i	=	2;	
j	=	i;	

//	can	be	optimized	to	

i	=	2;	
j	=	i;	

//	is	this	ever	not	equivalent/ok?	

button.c	

The	little	button	that	wouldn’t	

Peripheral Registers
These registers are mapped into the address space of the
processor (memory-mapped IO).

These registers may behave differently than memory.

For example: Writing a 1 into a bit in a SET register
causes 1 to be output; writing a 0 into a bit in SET
register does not affect the output value. Writing a 1 to
the CLR register, sets the output to 0; write a 0 to a clear
register has no effect. Neither SET or CLR can be read. To
read the current value use the LEV (level) register.

volatile

For an ordinary variable, the compiler can use its
knowledge of when it is read/written to optimize accesses
as long as it keeps the same externally visible behavior.

However, for a variable that can be read/written externally
(by another process, by peripheral), these optimizations
will not be valid.

The volatile qualifier applied to a variable informs the
compiler that it cannot remove, coalesce, cache, or reorder
references. The generated assembly must faithfully execute
each access to the variable as given in the C code.

What is ‘bare metal’?

The default build process for C assumes a hosted
environment. It provides standard libraries, all the
stuff that happens before main.

To build bare-metal, our makefile disables these
defaults; we must supply our own versions when
needed.

Makefile settings
Compile freestanding

				CFLAGS	=-ffreestanding	

Link without standard libs and start files

				LDFLAGS	=	-nostdlib	

Link with gcc to support division (violates

				LDLIBS	=	-lgcc	

Must supply own replacement for libs/start

 That’s where the fun is…!

Pseudo-instruction!
(assemblers are helpful)

LDR pseudo-instruction
Which of these mov instructions are valid?

 mov r0, #0x7e
 mov r0, #0x7e00000
 mov r0, #0xfff00
 mov r0, #0xffffffff
 mov r0, #0x107e  

LDR pseudo-instruction
Which of these mov instructions are valid?

 mov r0, #0x7e
 mov r0, #0x7e00000
 mov r0, #0xfff00
 mov r0, #0xffffffff
 mov r0, #0x107e  

For ldr= pseudo-instruction, any 32-bit
constant is valid. If we replace mov with ldr=,
what does assembler emit?

 ldr r0, =0x107e

ldr r0, =0x20200020
mov r1, #(1<<15)
str r1, [r0]

Assembler emits:

e59f0004 ldr r0, [pc, #4]
e3a01902 mov r1, #32768 ; 0x8000
e5801000 str r1, [r0]
20200020 .word 0x20200020

Program to set gpio 47 high (green led on Pi)

Quiz: what does this program do
… on linux?

… on MacOS?

… on your Pi?

int main(int argc, char *argv[])
{
 unsigned int *start = 0x0,
 *end = (unsigned int *)0x100000;

 for (unsigned int *addr = start; addr < end; addr++)
 *addr = 0;
}

