This week

® Assignment | due Wednesday: you'll have proved your
bare-metal mettle!

= [ab 2:
= do pre-lab reading! MAN, | SUCK AT THIS GAME.

. CAN YOU GIVE ME.

= lots of wiring — you need to A FEW POINTERS?
i Ox3A28213A
work efficiently (QAN
Ox7363682E.

| HATE Yov
Goals for today

® Pointers, pointers, and more pointers!
= ARM addressing modes, translation to/from C
® Details: volatile qualifier, bare-metal build

1000000001 ¢

4 GB
Memory
Memory is a linear sequence
of bytes
Addresses start at 0, go
to 232-1 (32-bit architecture)
0200000001 ¢

512 MB

[8010] Memory as a linear sequence of indexed bytes

[800c] [20

e> Same memory,
grouped into 4-byte words

1800817 |00 [809¢1 120200020
€ [8008] 5801000
i 0041 |€3201902
[8004] |02 e59f0004

e5 [8000]

[8000] |04

Note little-endian byte ordering

ARM load/store instructions

ldr r0O, [rl]
str rO, [rl]
Store is a misfit among ARM instructions —

operands are in order of src, dst
(reverse of all other instructions)

ASM and memory

At the assembly level, a 4-byte word could represent
® an address,
® an int,
® 4 characters

® an ARM instruction

The Idr/str instructions are agnostic to type:

assembly has no type system to guide or restrict us
on what we do with those words.

C pointer types

An address is a memory location, represented as an
unsigned int (because this is a 32-bit architecture).

A pointer is a variable that holds an address.

The “pointee” is the data stored at that address.

int val = 5; 0x0000810c <0xo5

0x00

0x00

0x00

int* ptr = &val; 0x00008110 ~|0Ox0c

Ox81

0x00

0x00

Why Pointers!?

Access specific memory locations like FSEL2

Pointers can be used to reference elements of an array

Pointers allow for creating dynamic data structures at
runtime

Pointers can be used to efficiently share/pass references
without making copies of large data structures

Pointers are used in data structures to reference other
data structures

C Pointer Operations

int val = 5;
int* ptr = &val;

0x0000810c
0x00008110

Z

0Ox05

0x00

0x00

0x00

Ox0c

Ox81

0x00

0x00

C Pointer Operations

int val = 5;
int* ptr = &val;

*ptr = 7;

0x0000810c
0x00008110

0x0000810c
0x00008110

Z
Z

0Ox05

0x00

0x00

0x00

Ox0c

Ox81

0x00

0x00

Ox07

0x00

0x00

0x00

Ox0c

Ox81

0x00

0x00

C Pointer Operations

int val = 5;

int* ptr = &val;
*ptr = 7;
int** dptr = &ptr;

0x0000810c
0x00008110

0x0000810c
0x00008110

0x0000810c
0x00008110
0x00008114

NN

0Ox05

0x00

0x00

0x00

Ox0c

Ox81

0x00

0x00

Ox07

0x00

0x00

0x00

Ox0c

Ox81

0x00

0x00

Ox07

0x00

0x00

0x00

Ox0c

Ox81

0x00

0x00

Ox10

Ox81

0x00

0x00

C Pointer Operations

int val = 5;

int* ptr = &val;
*ptr = 7;

int** dptr = &ptr;
*dptr = NULL;

0x0000810c
0x00008110

0x0000810c
0x00008110

0x0000810c
0x00008110
0x00008114

0x0000810c
0x00008110
0x00008114

ATAA AT A

0Ox05

0x00

0x00

0x00

Ox0c

Ox81

0x00

0x00

Ox07

0x00

0x00

0x00

Ox0c

Ox81

0x00

0x00

Ox07

0x00

0x00

0x00

Ox0c

Ox81

0x00

0x00

Ox10

Ox81

0x00

0x00

Ox07

0x00

0x00

0x00

0x00

0x00

0x00

0x00

Ox10

Ox81

0x00

0x00

C Pointer Operations

char a = ‘a’; .
char* ptr = &b; 0x00008110 0x0d|0x81|0x00|0x00

C Pointer Operations

char a = ‘a’; 0x0000810
X C

char b = ‘b’;

char* ptr = &b; 0x00008110
0x0000810c¢

*ptr =
0x00008110

UK
2 | b

0x00

0x00

Ox0d |0x81

0x00

0x00

0x00

0x00

O ‘C’
Ox0d|0x81

0x00

0x00

C Pointer Operations

char a ‘a’;
char b = ‘b’
char* ptr = &b;

*ptr = ‘¢’;

char** dptr = &ptr;

0x0000810c
0x00008110

0x0000810c
0x00008110

0x0000810c
0x00008110
0x00008114

‘a

U

I~

0x00

0x00

0x0d

Ox81

0x00

0x00

0x00

0x00

O ‘C’
Ox0d|0x81

0x00

0x00

—

(a’

‘C’

0x00

0x00

Ox0d

Ox81

0x00

0x00

Ox10

Ox81

0x00

0x00

C Pointer Operations

char a ‘a’;
char b = ‘b’

char* ptr = &b;

*ptr = ‘¢’;

char** dptr = &ptr;

*dptr = NULL;

0x0000810c
0x00008110

0x0000810c
0x00008110

0x0000810c
0x00008110
0x00008114

0x0000810c
0x00008110
0x00008114

Z

‘a

U

I~

0x00

0x00

0x0d

Ox81

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

C pointer types

C has a type system: tracks the type of each variable.

Operations required to respect the data type.

= Can’t multiply int*s, can’t deference an int

Distinguishes pointer variables by type of pointee

" Dereferencing an int™ is an int

® Dereferencing a char* is a char

C arrays

An array allocates multiple instances of a type

contiguously in memory

char ab[2];
ab[0] = ‘a’;
ab[1l] = ‘b’;

int ab[2];
ab[0] = ‘a’;
ab[l] = 9;

0x0000810c

0x0000810c
0x00008110

0x00

0x00

0x00

0x09

0x00

0x00

0x00

Arrays and Pointers

You can assign an array to a pointer

int ab[2] = {5, 7};
int* ptr = ab; // ptr = &(ab[0]);

Incrementing pointers advances address by size of type
ptr = ptr + 1; // now points to ab[1l]

What does the assembly look like!?
What if ab is a char[2] and ptr is a char™®?

Pointer basics: & *%

int m, n, *p, *q;

P = &
*

nj;
p = Ny

// same as prev line?

Q
li
¥ we

o

™~

™~
n
Q)
=
()
Q
n
o
2]
()
<
=
-
-
()
Y

m =n; // same as prev line?

int

'C 'O

Pointers and arrays

n, arr[4], *p;

arr;
&arr[0]; // same as prev line?

3;
= 3; // same as prev line?

*(arr + 1);
arr[l]; // same as prev line?

Fancier addressing modes

Preindex, non-updating

ldr r0O, [rl, #4] // constant displacement
ldr r0, [rl, r2] // variable displacement
ldr r0, [rl, r2, 1lsl #4] // scaled index

PreindeXx, writeback (update dst before use)

ldr r0, [rl, #4]! // rl pre-updated += 4
ldr r0, [rl, r2]! // rl pre-updated += r2
ldr r0O, [rl, r2, 1sl #4]! // rl pre-updated += r2 << 4

Postindex (update dst after use)

ldr r0, [rl], #4 // rl post-updated += 4
ldr r0, [rl], r2 // rl post-updated += r2
ldr r0O, [rl], r2, 1sl #4 // rl post-updated += r2 << 4

Fancier addressing modes

Preindex, hon-updating

ldr r0O, [rl, #4] // constant displacement
ldr r0, [rl, r2] // variable displacement
ldr r0O, [rl, r2, 1sl #4] // scaled index

Preindex, writeback (update dst before use)

for (char* ptr = &ch; *ptr != 0; ++ptr) {}
ldr r0, [rl, #4]! // rl pre-updated += 4
ldr r0, [rl, r2]! // rl pre-updated += r2
ldr r0, [rl, r2, 1sl #4]! // rl pre-updated += r2 << 4

Postindex (update dst after use)

for (char* ptr = &ch; *ptr != 0; ptr++) {}
ldr r0, [rl], #4 // rl post-updated += 4
ldr r0, [rl], r2 // rl post-updated += r2
ldr r0O, [rl], r2, 1sl #4 // rl post-updated += r2 << 4

C-strings

char *s = "Stanford";
char arr[] = "University";
char oldschool[] = {'L','e"','1','a",'n','d"};
char buf[100];
char *ptr;

// which

ptr =
ptr
ptr
arr
buf

vih wWDBNER

assignments are valid?
S5

arr;

buf;

ptr;

oldschool;

\©
64
63
61
6C
65
4c

??\06463

616c654C

C-strings

char *s = "Stanford";
char arr[] = "University";

char oldschool[] = {'L','e','1','a"','n',"'d"};

char buf[100];
char *ptr;

// which assignments are valid?
1 ptr = s;

2 ptr = arr;

3 ptr = buf;

J

5—buf—=—oldschool;

You cannot assigh an
array to a pointer!

\©
64
63
61
6C
65
4C

??\06463

616c654C

What does a typecast actually do?

Aside: why is this even allowed?

Casting between different types of pointers — perhaps plausible
Casting between pointers and int — sketchy

Casting between pointers and float — bizarre

int *p; double *qg; char *s;

ch = *(char *)p;
val = *(int *)s;
val = *(int *)q;

Power of Types and Pointers

struct gpio {

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

volatile struct gpio *gpio

gpio->fsel[0]

fsel[6];
reservedA;
set[2];
reservedB;
clr[2];
reservedC;
lev[2];

Address Field Name Description Size Rea.d/
Write

Ox 7£20 0000 GPFSELO | GPIO Function Select 0 32 R/W
Ox 7£20 0000 GPFSELO | GPIO Function Select 0 32 R/W
Ox 7€20 0004 GPFSEL1 | GPIO Function Select 1 32 R/W
Ox 7£20 0008 GPFSEL2 | GPIO Function Select 2 32 R/W
Ox 7E20 000C GPESEL3 | GPIO Function Select 3 32 R/W
Ox 7£20 0010 GPESEL4 | GPIO Function Select 4 32 R/W
Ox 720 0014 GPESEL5 | GPIO Function Select 5 32 R/W
Ox 7E20 0018 Reserved
Ox 7£20 001C GPSETO | GPIO Pin Output Set 0 32 W
Ox 7£20 0020 GPSET1 | GPIO Pin Output Set 1 32 W
Ox 7E20 0024 Reserved -
Ox 7£20 0028 GPCLRO | GPIO Pin Output Clear 0 32 w
Ox 7€20 002C GPCLR1 | GPIO Pin Output Clear 1 32 W
Ox 7E20 0030 Reserved
Ox 7E20 0034 GPLEVO | GPIO Pin Level 0 32
Ox 7£20 0038 GPLEV1 | GPIO Pin Level 1 32

(struct gpio *)0x20200000;

Pointers: the fault in our *s

Pointers are ubiquitous in C, and inherently
dangerous. Be vigilant!

Q. For what reasons might a pointer be invalid?

Q. What is consequence of using an invalid
pointer?

OKAY, HUMAN. YOU KNOW WHEN YOURE | AND SUDDENLY YoU | WELL, THATS WHAT A
HUH? 3 FALLING ASLEER AND | MISSTEP, STUMBLE, | SEGFAULT FEELS LIKE.
1UH: YOU IMAGINE YOURSELF | AND JOLT AWAKE? \
BEFORE Yo WALKING OR VEAH DOUBLE - CHECK. YOUR
HIT (OMPLLE; W SONETHING, AL | DR poTeRs, Okar?
LISTEN VP, ? Q%\ X ﬂ

C vs. Assembly

int i, j;

i=1;
1 = 2;
J = 1;

// can be optimized to

i
J

2;
i;

// 1s this ever not equivalent/ok?

button.c

The little button that wouldn’t

Peripheral Registers

These registers are mapped into the address space of the
processor (memory-mapped |O).

These registers may behave differently than memory.

For example:Writing a | into a bit in a SET register
causes | to be output; writing a 0 into a bit in SET
register does not affect the output value.Writing a | to
the CLR register, sets the output to 0; write a 0 to a clear
register has no effect. Neither SET or CLR can be read.To
read the current value use the LEV (level) register.

volatile

For an ordinary variable, the compiler can use its
knowledge of when it is read/written to optimize accesses
as long as it keeps the same externally visible behavior.

However, for a variable that can be read/written externally
(by another process, by peripheral), these optimizations
will not be valid.

The volatile qualifier applied to a variable informs the
compiler that it cannot remove, coalesce, cache, or reorder
references. The generated assembly must faithfully execute
each access to the variable as given in the C code.

What is ‘bare metal’?

The default build process for C assumes a hosted
environment. It provides standard libraries, all the
stuff that happens before main.

To build bare-metal, our makefile disables these

defaults; we must supply our own versions when
needed.

{in’c get RandomNumber-()

return Y. // chosen by foir dice roll.
// quaranteed to be random.

Makefile settings

Compile freestanding

CFLAGS =-ffreestanding

Link without standard libs and start files

LDFLAGS = -nostdlib

Link with gcc to support division (violates
LDLIBS = -1lgcc

Must supply own replacement for libs/start

That’s where the fun is...!

Pseudo-instruction!

(assemblers are helpful)

LDR pseudo-instruction

Which of these mov instructions are valid?

mov r0, #0x7e

mov r0, #0x7e00000
mov r0, #O0xf££00
mov r0O, #Oxffffffff
mov r0O, #0x107e

LDR pseudo-instruction

Which of these mov instructions are valid?

mov r0, #0x7e

mov r0, #0x7e00000
mov r0, #O0xf££00
mov r0O, #Oxffffffff
mov r0O, #0x107e

For Idr= pseudo-instruction, any 32-bit
constant is valid. If we replace mov with Idr=
what does assembler emit?

ldr r0O, =0x107e

Program to set gpio 47 high (green led on Pi)

ldr r0, =0x20200020
mov rl, i#(1<<15)
str rl, [rO]

Assembler emits:

e59f0004 1ldr r0, [pc, #4]

e3a01902 mov rl, #32768 ; 0x8000
e5801000 str rl, [rO]

20200020 .word 0x20200020

Quiz: what does this program do

... on linux?
... on MacO¥§?

... on your Pi?

int main(int argc, char *argv[])

{

unsigned int *start = 0xO0,
*end = (unsigned int *)0x100000;

for (unsigned int *addr = start; addr < end; addr++)
*addr = 0;

