
Admin
Lab1 => Assign1
We're off and running!

 Check in

Today: From Assembly to C
 (and back again)

Branch instructions, PC-relative

C language as “high-level” assembly

What does a compiler do?

Makefiles

Control flow, pc register
Instructions stored in contiguous memory

pc tracks address in memory where instructions are being read

pc register separate from x0-x31, not accessible to most instructions,
use special instructions to access/change pc

Default is "straight-line" code: next instruction to execute is at next
higher memory address (pc = pc + 4)

jump instruction assigns pc to different address

 j target

Jump is unconditional (always taken)
Branch is conditionally taken based on test

Mnemonic Action

BEQ rs1,rs2,imm12 Branch equal (rs1 = rs2)

BNE rs1,rs2,imm12 Branch not equal (rs1 ≠ rs2)

BGE rs1,rs2,imm12 Branch greater than or equal (rs1 ≥ rs2)

BLT rs1,rs2,imm12 Branch less than (rs1 < rs2)

Branch instructions

If condition satisfied, branch is taken (pc = pc + imm12)
otherwise falls through (pc = pc + 4)

Q: How to... branch greater? Branch less-equal? Branch zero? Branch negative?

Challenge for you
Write an assembly program to count the
"on" bits in a given numeric value

li a0, val
li a1, 0

// a0 holds input value
// use a1 to store count of on bits in value

Branch instruction encoding

- branch target computed as PC-relative offset
- purple bits encode offset (immediate)
- "position-independent" code

12-bit immediate expressed as count of 2-byte steps
Q: How far can this reach?

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

imm7 rs2 rs1 fn3 imm5 opcode

if rs1 cmp_op rs2 pc = pc + imm12

ISA design is an art form!
As much about what is omitted as what is included
All registers general-purpose registers, no act on memory ("load-store")

Simplicity (avoid redundancies, single addressing mode)

Isolate architecture from implementation (no delay slots branch/load, no
condition codes)

Regularity: all instructions 4-bytes (2 for compressed)

Handling/placement of bits in encoding for ease of decode/data path

Modular, extensible (tiny base ISA, orthogonal additions)

Data-informed design (learn from past)

Why assembly?
 What you see is what you get
 No surprises
 Precise control, timing
 Unfettered access to hardware
But... tedious, hard to read, hardware-specific

Why C?
 More concise
 Easier to read
 Can name variables and structures
 Type-checking
 More portable, architecture-neutral
 Functions

Real question is not whether to use assembly, but when...

Dennis Ritchie

“BCPL, B, and C family of languages are particularly oriented towards system
programming, are small and compactly described, and are amenable to translation by
simple compilers. They are “close to the machine” in that the abstractions they
introduce are readily grounded in the concrete data types and operations supplied by
conventional computers, and they rely on library routines for input-output and other
interactions with an operating system. … At the same time, their abstractions lie at a
sufficiently high level that, with care, portability between machines can be achieved.”
— Dennis Ritchie

This is not coincidence!
C features closely model the ISA:
data types, arithmetic/logical
operators, control flow, access to
memory, ... all provided in form
of portable abstractions

Ken Thompson built UNIX using C

C is the language of choice
for systems programmers

The C Programming Language

“C is quirky, flawed, and an enormous success”
— Dennis Ritchie

“C gives the programmer what the programmer wants; few
restrictions, few complaints”
— Herbert Schildt

“C: A language that combines all the elegance and power of assembly
language with all the readability and maintainability of assembly
language”
— Unknown

Programming language popularity over time

C

Compiler Explorer
is a neat interactive tool to see translation from C to assembly.
Let’s try it now!

Configure settings to follow along:
C
RISC-V (64 bits) gcc 12
-Og -ffreestanding

https://godbolt.org

https://godbolt.org

Higher-level abstractions, structured programming
Named variables, constants
Arithmetic/logical operators
Control flow

Portable
Not tied to particular ISA or architecture

Low-level enough to get to machine when needed
Bitwise operations
Direct access to memory
Embedded assembly, too!

Major props to the C compiler

Compile-time vs. runtime
Compile-time: compiler running on your laptop
 • read C source text, parse/check semantically valid
 • analyze code to understand structure/intent
 • generate assembly instructions, assembler to binary

Runtime: program binary running on Pi
 • load machine instructions to memory
 • fetch/decode/execute

Optimizer does work at CT to streamline count of
instructions to be executed at RT

Assembler as
 Transform assembly code (text)
 into object code (binary machine instructions)
 Mechanical rewrite, few surprises

Compiler gcc
 Transform C code (text)
 into object code
 (likely staged C ➜ asm ➜ object)
 Complex translation, high artistry

Know your tools!

blink.bin: blink.s
 riscv64-unknown-elf-as blink.s -o blink.o
 riscv64-unknown-elf-objcopy blink.o -O binary blink.bin

run: blink.bin
 mango-run blink.bin

clean:
 rm *.o *.bin

Make
One-step build process using make
Makefile is text file that describes build steps as "recipes"
Dependencies determine which steps needed to re-build

Rule
Recipe

DependencyTarget

Writing out explicit recipes becomes onerous, so make has
all kinds of ways to match patterns, define variables, etc.

NAME = myprogram

ARCH = -march=rv64imac -mabi=lp64
CFLAGS = $(ARCH) -g -Og -Wall -ffreestanding
LDFLAGS = $(ARCH) -nostdlib

all : $(NAME).bin

%.bin: %.elf
 riscv64-unknown-elf-objcopy $< -O binary $@

%.elf: %.o
 riscv64-unknown-elf-gcc $(LDFLAGS) $< -o $@

%.o: %.c
 riscv64-unknown-elf-gcc $(CFLAGS) -c $< -o $@

Make pattern rules

Bare-metal vs. Hosted

The default build process for C assumes a hosted environment.

What does a hosted system have that we don’t?

 - standard libraries

 - standard start-up sequence

 - OS services

To build bare-metal, our Makefile disables these defaults
We supply our own replacements where needed

Build settings for bare-metal
Compile freestanding

 CFLAGS = -ffreestanding

Link excludes standard library and start files

 LDFLAGS = -nostdlib

Link with gcc if need software floating point

 LDLIBS = -lgcc

Write our own code for all libs and start files

 This puts us in an exclusive club…

