
Admin

Important fix:
 Assign2 starter code
 test_breadboard
 gpio segment/digit
arrays are crossed
(see Ed post)

Today: C functions
Implementation of C function calls
Management of runtime stack, register use

loop:

 sw a1,0x40(a0)
 lui a2,0x3f00
delay:
 addi a2,a2,-1
 bne a2,zero,delay

 sw zero,0x40(a0)
 lui a2,0x3f00
delay2:
 addi a2,a2,-1
 bne a2,zero,delay2

 j loop

Excerpted from blink.s

Repeated code,
would be nice to unify…

loop:

 sw a1,0x40(a0)
 j pause

 sw zero,0x40(a0)
 j pause

 j loop
pause:
 lui a2,0x3f00
delay:
 addi a2,a2,-1
 bne a2,zero,delay

// but... where to go now?

loop:

 sw a1,0x40(a0)
 jal ra,pause

 sw zero,0x40(a0)
 jal ra,pause

 j loop
pause:
 lui a2,0x3f00
delay:
 addi a2,a2,-1
 bne a2,zero,delay
 jr ra

How to remember
where we came from, so
we can go back there...

loop:

 sw a1,0x40(a0)
 lui a2,0x3f00
 jal ra,pause

 sw zero,0x40(a0)
 lui a2,0x3f00
 jal ra,pause

 j loop
pause:
delay:
 addi a2,a2,-1
 bne a2,zero,delay
 jr ra

How to communicate
arguments to function?

Jump and Link jal
Saves pc+4 into rd before jump to target (pc-relative offset)
 jal rd,imm // rd = pc+4, pc = pc+imm

Jump and Link Register jalr
Saves pc+4 into rd before jump to target (register + offset)
 jalr rd,imm(rs1) // rd = pc+4, pc = rs1+imm

Also add upper immediate to PC auipc
 auipc rd,imm // rd = pc + imm<<12

Pseudo-instructions

New instructions

call fn -> jal ra,fn
jr rs1 -> jalr zero,O(rs1)
ret -> jalr zero,O(ra)

Anatomy of C function call
int factorial(int n)
{
 int result = 1;
 for (int i = n; i > 1; i--)
 result *= i;
 return result;
}

Call and return

Pass arguments

Local variables

Return value

Scratch/work space

Complication: nested function calls, recursion

Application binary interface
ABI specifies how code interoperates:

Mechanism for call/return
How parameters passed
How return value communicated
Use of registers (ownership/preservation)
Stack management (up/down, alignment)

Caller stores up to 8 arguments in a0 - a7
call (jal) saves pc+4 to ra and jump to target

 li a0,100
 li a1,7
 call fn

Callee stores return value in a0
ret (jalr) jumps back to ra

 add a0,a0,a1
 ret

Mechanics of call/return

sum(100, 7);

int sum(int a, int b) {
 return a + b;
}

Caller and Callee
caller: function doing the calling

callee: function being called

main is caller of range

range is callee of main

range is caller of abs

void main(void) {
 range(13, 99);
}

int range(int a, int b) {
 return abs(a-b);
}

int abs(int v) {
 return v < 0 ? -v : v;
}

Register Ownership
a0-a7,t0-t6 are callee-owned registers

Callee can freely use/modify these registers

Caller cedes to callee, has no expectation of register
contents after call

S0-s11 are caller-owned registers

Caller retains ownership, expects register contents to
be same after call as it was before call

Callee cannot use/modify these registers unless takes
steps to preserve/restore values

Discuss…
1. If callee needs scratch space for an intermediate
result, which type of register should it choose?

2. Why might a callee need to use a caller-owned
register? What does callee have to do if using one?

3. What is the advantage in having some registers
callee-owned and others caller-owned? Wouldn’t it
be simpler if all treated the same?

The stack to the rescue!
Reserve section of memory to store data for executing function

Stack frame allocated per function invocation
Can store local variables, scratch values, saved registers

sp points to lastmost value pushed
stack grows down

Decrement sp at function entry makes space for stack
frame ("push")
Access frame variables using sp-relative offset
Increment sp at function exit to clean up frame ("pop")

Call stack is LIFO, last frame pushed is first frame popped

code

0x6000000void main(void)
{
 delta(3, 7);
} delta

0x0

0x4000000

// start.s
lui sp,0x6000
call main

sp ➜

sp ➜

sp ➜

pc ➜

pc ➜
pc ➜

int delta(int a, int b)
{
 int diff = sqr(a) - sqr(b);
 return diff;
}

main

Diagram not to scale

sqr
sp ➜

int sqr(int v)
{
 return v * v;
}

sp ➜
sqr

sp ➜

addi sp,sp,-16
sd ra,8(sp)
sd s0,0(sp)
addi s0,sp,16
mv a1,a0
call sum
ld ra,8(sp)
ld s0,0(sp)
add sp,sp,16
ret

saved ra
sp ➜

sp ➜

Stack operation

saved s0/fp

Debugger is incredibly useful
Allows you to run your program in a monitored context
Can set breakpoints, examine state, change values,
reroute control, and more

gdb has simulation mode where it pretends to be an
RISC-V processor, running on your laptop 🙌

Pretty good approximation (not perfect, e.g. no
peripherals)

Gdb debugger

C vs Assembly Smackdown
Why C?
 Variable names, type system
 Function decomposition, control flow
 Portable abstractions
 Consistent semantics
 Compiler back-end doing heavy lifting - yay!

Why assembly?
 Execution is always in asm, this is the real deal -- WYSIWYG
 Ability to drop down and review/debug asm is key
 Certain hardware features only accessible via asm
 Hand-code in asm for optimization or obtain precise timing

