
Admin
Assign 1 due Tuesday 5pm

Show off your bare-metal mettle!

Pre-lab for lab2
Read gcc/make guides
Read about 7-segment display
Watch Ben E breadboard magic

Today: Hail the all-powerful C pointer
Addresses, pointers as abstractions for accessing memory
Memory layout for arrays and structs
Use of volatile

From C to Assembly
C language used to describe computation at high-level
 • Portable abstractions (names, syntax, operators), consistent semantics
 • Compiler emits asm for specific ISA/hardware

 - major technical wizardry in back-end !

Last lecture:
 • C variable ⇒ registers

 • C arithmetic/logical expression ⇒ ALU instructions

 • C control flow ⇒ branch instructions

This lecture:
 • C pointer ⇒ memory address

 • Read/write memory ⇒ load/store instructions

 • Array/struct data layout ⇒ address arithmetic

0xffffffffffffffff
Memory

64-bit addressable
Physical memory much smaller (1GB)

[8010]
20
20
00

[800c] 20
e5
80
10

[8008] 00
e3
a0
19

[8004] 02
[8003] e5
[8002] 9f
[8001] 00
[8000] 04

Byte-order is litte-endian

Linear sequence of bytes,
indexed by address

Instructions:
lw (load) from memory
 to register
sw (store) from register
 to memory

Accessing memory in assembly
lw and sw copy 4 bytes from memory location to register (or vice versa)

The memory address could refer to:
 • location reserved for a global or local variable or
 • location containing program instruction or
 • memory-mapped peripheral or ...
The 4 bytes of data being copied could represent:
 • a RISC-V instruction or
 • an integer or
 • 4 characters or ...

lw and sw access memory location by address
No notion of "boundaries", agnostic to data type
Up to asm programmer to use correct address and respect type

C pointers (+ type system!) are improved abstraction for accessing
memory

 lui a0,0x2000
 addi a1,zero,1

 sw a1,0x30(a0)

 sw a1,0x40(a0)

Pointer vocabulary
An address is a memory location. Address represented
as unsigned long (64-bit)

A pointer is a variable that holds an address

The “pointee” is the data stored at that address

* is the dereference operator, & is address-of

int val = 5;
int *ptr = &val;
*ptr = 7;

val [810c] 7

ptr [8108] 0x810c

C code Memory

C pointer types
C enforces type system: every variable declares data type
■ Declaration used by compiler to reserve proper amount of space;

determines what operations are legal for that data

Operations must respect data type
■ Can’t multiply two int* pointers, can’t deference an int

C pointer variables distinguished by type of pointee
■ Dereferencing an int* pointer accesses int
■ Dereferencing a char* pointer accesses char
■ Co-mingling pointers of different type disallowed
■ Generic void* pointer, raw address of indeterminate pointee type

 lui a0,0x2000
 addi a1,zero,1
 sw a1,0x30(a0)

loop:
 xori a1,a1,1
 sw a1,0x40(a0)

 lui a2,0x3f00
delay:
 addi a2,a2,-1
 bne a2,zero,delay

 j loop

let’s do it!

blink.s

 c_blink.c

What do C pointers buy us?
Access data at specific address, e.g. PB_CFG0 0x2000030

Access data by its offset relative to other nearby data (array
elements, struct fields)

Related data grouped together, organizes memory

Guide/constrain memory access to respect data type
(Better, but pointers still fundamentally unsafe...)

Efficiently refer to shared data, avoid redundancy/duplication

Build flexible, dynamic data structures at runtime

CULTURE FACT:
IN CODE, IT’S NOT CONSIDERED RUDE TO POINT.

C arrays
Array is simply sequence of elements stored in contiguous memory
No sophisticated array "object", no track length, no bounds checking

Declare array by specifying element type and count of elements
Compiler reserves memory of correct size starting at base address
Access to elements by index is relative to base

char letters[4];
int nums[5];

letters[0] = 'a';
letters[3] = 'c';

nums[2] = 0x107e;

[8118] 61 ? ? 63
[8114] ?
[8110] ?
[810c] 0000107e
[8108] ?
[8104] ?

Address arithmetic
Memory addresses can be manipulated arithmetically!

Arithmetic used to access data at neighboring location

unsigned int *base, *neighbor;

base = (unsigned int *)0x2000030; // PB_CFG0
neighbor = base + 1; // 0x2000034, PB_CFG1

IMPORTANT ⚠ ⚠ ⚠
 C pointer add/subtract always scaled by sizeof(pointee)
 e.g. operates in pointee-sized units

Array indexing is just pretty syntax for pointer arithmetic
 array[index] <=> *(array + index)

Pointers and arrays

 int n, arr[4], *p;

 p = arr;
 p = &arr[0]; // same as prev line

 arr = p; // ILLEGAL, why?

 *p = 3;
 p[0] = 3; // same as prev line

 n = *(arr + 1);
 n = arr[1]; // same as prev line

C-strings

char *s = "Leland";
char *t;
char buf[9];

t = s;
s[0] = 'R';
*t = 'Z';
s = buf + 4; // where does s point?
s[1] = t[3]; // what value changes?

No string "abstraction", just sequence of chars in memory, e.g. char array
char* points to first character
Must be terminated by null char (zero byte)

Trace the following code. Draw a memory diagram!

RISC-V Addressing mode
 lw a0, imm(a1) // constant displacement

NO: variable displacement, scaled index, pre/post index

Could be useful for accessing C data types, how does RISC-V do it?

Use
CompilerExplorer
to find out more!

c_button.c

The little button that wouldn’t
A cautionary tale

😢 😠 🤔 😲 🤯 ...
(or, why every systems programmer should be able to read assembly)

 lui a0,0x2000
 addi a1,zero,0x1
 sw a1,0x30(a0)
 sw zero,0x60(a0)

loop:
 lw a2,0x70(a0)
 and a2,a2,a1
 beq a2,zero,off

on:
 sw a1,0x40(a0)
 j loop

off:
 sw zero,0x40(a0)
 j loop

void main(void) {

 *PB_CFG0 = 1; // config PB0 output

 *PC_CFG0 = 0; // config PC0 input

 while (1) {

 if ((*PC_DATA & 1) != 0) {

 *PB_DATA = 1;

 } else {

 *PB_DATA = 0;

 }

 }

}

Peripheral registers
These registers are mapped into the address space
 of the processor (memory-mapped IO).

These registers may behave differently than ordinary memory.

Peripheral registers access device state, and changing/reading the state
may have more complex effects than a regular load/store of an ordinary
memory address.

Q: What can happen when compiler makes assumptions reasonable
for ordinary memory that don’t hold for these oddball registers?

volatile
The compiler analyzes code to see where a variable is read/
written. Rather than execute each access literally, may streamline
into an equivalent sequence that accomplishes same result. Neat!

If memory location can be read/written externally (by another
process, by peripheral), these optimizations can be invalid!

Tagging a variable with volatile qualifier tells compiler that it
cannot remove, coalesce, cache, or reorder accesses to this
variable. The generated assembly must faithfully perform each
access of the variable exactly as given in the C code.

(If ever in doubt about what the compiler has done, use tools to review generated
assembly and see for yourself...!)

Pointers and structs

struct gpio {
 unsigned int cfg[4];
 unsigned int data;
 unsigned int drv[4];
 unsigned int pull[2];
};

volatile struct gpio *pb = (struct gpio *)0x2000030;

pb->cfg[0] = ...

Ref: D1-H User Manual p.1093

https://cs107e.github.io/readings/d1-h_user_manual_v1.0.pdf#page=1093

The utility of pointers
Accessing data by location is ubiquitous and powerful

 You learned in CS106B how pointers are useful
Sharing data instead of redundancy/copying
Construct linked structures (lists, trees, graphs)
Dynamic/runtime allocation

Now you see how it works under the hood
Memory-mapped peripherals located at fixed address
Access to struct fields and array elements using relative location

What do we gain by using C pointers over raw lw/sw?
 Type system adds readability, some safety
 Pointee and level of indirection now explicit in the type
 Organize related data into contiguous locations, access using offset arithmetic

Segmentation fault
Pointers are ubiquitous in C, safety is low. Be vigilant!

Q. For what reasons might a pointer be invalid?

Q. What is consequence of accessing invalid address
 ...in a hosted environment?
 ...in a bare-metal environment?

"The fault, dear Brutus, is not in our stars,
But in ourselves, that we are underlings."
Julius Caesar (I, ii, 140-141)

http://www.owleyes.org/text/julius-caesar/read/act-i-scene-ii/root-71632-47/81112

