Computer Systems from the Ground Up

Winter 2024 https://cs107e.github.io

Who?

Anna

Ben

Didi

+ you!

Intrepid young padawans

Ishita

Julie

Kenny

Liana

Pat

Learning goals

I) Understand how computers represent data, execute programs, and control peripherals

2) Master your tools

Weekly Cadence

	Mor		Tue	Wed	Thu	Fri
Yo	u are here! ⇒ 8		9	10	11	12
	Architecture		Lab 0: Setup	Assign 0: Setup ——		ASM
			· ·			
	15		16	17	18	19
	RISC-V					C Control
_		- A0 due	Lab I:ASM	Assign I:ASM ——		
	22		23	24	25	26
	C Pointers					C Functions
_		- AI due	Lab 2: C	Assign 2: Clock —		
	29		30	31	Feb 1	2
	Serial					
_		- A2 due	Lab 3: Strings	Assign 3: Printf ——		

Each week has a focus topic

Pair of coordinated lectures on Fri and Mon

Lab on Tue/Wed evening

Assignment handed out Wed after lab, due following Tuesday 5pm **Staying on pace** leads to best outcomes!

Lectures

Attendance is **necessary**

Content is unique to our course, no textbook
The readings/slides are not a standalone resource
Lectures are not recorded

In-person attendance allows you to participate, ask questions, stay on schedule

Labs

Attendance is **mandatory**

Guided exercises, work with peers, check in with staff

Finish lab **ready** for assignment, esp. experience with tricky parts (hardware/software interface)

Philosophy: lots-of-help, hands-on, collaborative

Lab room: Gates B02

Assignments

7 weekly assignments

Build on each other, complete full system

Assignment specifications

Core (required, tight spec, guided steps)

Extension (optional, opportunity for exploration/creativity)

Revise and **resubmit** to address issues in core functionality

Project

Design and build your own system

Nearly every instruction is code you wrote yourself!

Projects!

Learning community

Stay connected

Participate in lecture

Collaborate in lab

Discuss on Ed forum

Come to office hours

Meet up in lab room

Be **curious**. Learn by **doing**. Ask for and offer **help**.

https://mangopi.org/_media/mq-pro-vl2-ibom.html

von Neumann architecture

CPU:

ALU

Registers

Control Unit

instruction register, program counter

Memory:

Stores data and instructions

Mechanisms for input/output

Critical innovation:

both instructions and data kept in memory

"stored program" computer

Image credit https://en.wikipedia.org/wiki/Von_Neumann_architecture#/media/File:Von_Neumann_Architecture.svg

Memory Map

Memory is a large array

Storage locations are accessed using a 64-bit index, called the address

Address refers to a byte (8-bits)

4 consecutive bytes form a word (32-bits)

Maximum addressable memory is 16EB (But... 42-bit address lines)

Oxfffffffffffffff

$$2^{10} = 1024 = 1 \text{ KB}$$

 $2^{20} = 1 \text{ MB}$
 $2^{30} = 1 \text{ GB}$

$$2^{64} = 16 EB$$

0x40000000

Running a Program

RISC-V Architecture / Floor Plan

https://ripes.me/

	x0 / zero	
	x1	
	x2	
	x3	
	x4	
	x5	
	x6	
	x7	
	x8	
	x9	
	x10	
	x11	
	x12	
	x13	
	x14	
	x15	
	x16	
	x17	
	x18	
	x19	
	x20	
	x21	
	x22	
	x23	
	x24	
	x25	
	x26	
	x27	
	x28	
	x29	
	x30	
	x31	
	XLEN	
XLEN-1		0

32 registers (x0-x31)

PC = program counter

Data paths dictate constraints on operations

and a3, a3, a2

What are possible inputs to ALU? Where does result go?

addi a2,zero,2

Where does an immediate value come from? Where can it flow to?

Some ALU instructions

```
add rd, rs1, rs2
sub rd, rs1, rs2
and rd, rs1, rs2
or rd, rs1, rs2
sll rd, rs1, rs2
srl rd, rs1, rs2
              R-type (three registers: dest, source I, source 2)
addi rd, rs, imm12
andi rd, rs, imm12
ori rd, rs, imm12
slli rd, rs, imm12
              I-type (source2 is constant not register)
```

First week: set up

Before lab:

- Review course guides:
 - Unix tools (shell, editor, git)
 - Electricity (simple circuits, Ohm's law)
 - Number representation (binary, bit operations)
- Install development tools

During lab:

- Establish comfort with background topics
- Practice with environment/tools, build productive habits
- Get help resolving any installation snags
- Meet one another!