Admin

LabO

Assign0

Ed forum

OH coming soon to calendar

We are here!

Today: RISC-V ISA

Historical milestones in computer architecture
Origins of RISC-V ‘

RISC-V instruction set architecture RISC-\/®

Whirlwind history tour

Mainframe era (50s,60s)

IBM had 4 incompatible lines of computers

System/360: one ISA to rule them all (backward
compatibility becomes a thing...) now oldest surviving ISA

DEC PDP-8 -> PDP-11 -> Vax (Bell Labs, unix)

ISA prioritize assembly programmer

Personal desktop computer

Intel iIAPX 432 6+ year visionary failure (32-bit, OO, Ada)
8086 stopgap developed | year (16-bit 8Mhz 29K transistors)
Increasing use of HLL, compiler

Moore's Law
Count of transistors in |C doubles every 2 years

Progression, Moore’s law

1010
HUMAN
1o BRAIN
ELECTROMECHANICAL SOLID- VACUUM TRANSISTOR INTEGRATED CIRCUIT
STATE TUBE
10 RELAY
MOUSE
CORE i7 QUAD4p BRAIN
o101 I~
S PENTIUM 4 ‘ CORE 2 DUO
> PENTIUM III ' .
[+ 8 P ’
& 10 PENTIUM II e
o COMPAQ DNA
e DESKPRO 386 K COMPUTING?
Q100 |- i
o ALTAIR ssoo ‘ PENTIUM
) IBM 1130
IBM AT-80286
> DEC PDP-1 } ‘1
=
= IBM PC
2 10: |- '
< UNIVAC | DEC APPLE Il
=) PDP-10
‘2,’ 0 R I T T O T 7 | 9 | BT)) T e)
© COLOSSUS
IBM
IBM 704
HOLLERITH \
TABULATOR ’
L x BELL
10+ NATIONAL CALCULATOR
ELLIS 3000 MOPEL 1 © BCA Research 2013
ANALYTICAL ENGINE
8 8 28 2 |8 8 8 ¥ € ¥ 8 B8 8 8 R R 8 8 8 & 8 &8 ¢ 2 & <&
S 2R3 B R EEE R 2 2 B2 eBRE RSN

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND
2012 REPRESENT BCA ESTIMATES.

The “semantic gap”

Gap between HL languages and machine code
One HL construct = many machine instructions

Improve performance of compiled code by adding fancier machine
instructions (procedure calls, array access, etc)?

CISC (complex instruction set computer)
Insns to match HL can be complex to implement in hardware

But... researchers in 70s work out:
Compilers mostly don't emit the complex instructions
Avoid special cases, sequence of simple ops often faster anyway
Real-world programs spend most of their time executing simple ops
Complex ops slow down execution, even when you don't use them

From CISC to RISC

Hennessy & Patterson 1982 MIPS

(microprocessor w/o interlocked pipeline stages)
RISC reduce footprint, small number of simple ops

Many advantages to keeping base simple
Simpler to design/verify
Lower costs (die area, higher yield, energy consumption)
Enable pipelined implementation
Higher throughput (faster clock, fewer cycles per ins)
Don't pay for what you don't use

Assembly examples

C COde arr[i] —
¥
0: 8914b7
)(E;éi 3: ¢c3
0: e7802101
ARM 4: el2fffle
0: 00259593
'V 4. oeb50533
8: 00c52023
c: 00008067

void set(int arr[], int i, int val) {
val;

Size of entire ISA
movl %edx, (%rdi,%rsi,4)
retq 1500 instr, 5000 pp
str r2, [r0, r1, lsl #2]
bx 1r

500 instr, 1200 pp

sll al,al1,0x2
add a0,a0,al
sw a2,0(a0)
ret

40 instr, 220 pp

AAA—ASCII Adjust After Addition

INSTRUCTION SET REFERENCE, A-L

x86 puts the

Opcode Instruction Op/ | 64-bit Compat/ |Description
€n |Mode Leg Mode C . C I S C
37 AAA Z0 |Invalid Valid ASCIl adjust AL after addition. I n
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 N/A N/A N/A N/A
Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL register is the implied
source and destination operand for this instruction. The AAA instruction is only useful when it follows an ADD
instruction that adds (binary addition) two unpacked BCD values and stores a byte result in the AL register. The
AAA instruction then adjusts the contents of the AL register to contain the correct 1-digit unpacked BCD result.

If the addition produces a decimal carry, the AH register increments by 1, and the CF and AF flags are set. If there
was no decimal carry, the CF and AF flags are cleared and the AH register is unchanged. In either case, bits 4

through 7 of the AL register are set to 0.

arm is
but ...

RISC

ARM Instructions

LDMIAEQ SP!, {R4-R7, PC}

31 28 27 26 25 24 23 22 21 20 19 16 15 0

A4.1.20 LDM (1)

cond 1 0 O|P|U|0W|1 Rn register_list

LDM (1) (Load Multiple) loads a non-empty subset, or possibly all, of the general-purpose registers from
sequential memory locations. It is useful for block loads, stack operations and procedure exit sequences.

The general-purpose registers loaded can include the PC. If they do, the word loaded for the PC is treated
as an address and a branch occurs to that address. In ARMvS5 and above, bit[0] of the loaded value
determines whether execution continues after this branch in ARM state or in Thumb state, as though a BX
(Toaded_value) instruction had been executed (but see also The T and J bits on page A2-15 for operation on
non-T variants of ARMVS). In earlier versions of the architecture, bits[1:0] of the loaded value are ignored
and execution continues in ARM state, as though the instruction MOV PC, (1oaded_value) had been executed.

Syntax

LDM{<cond>}<addressing_mode> <Rn>{!}, <registers>

RISC-V origins

2010 Cal EECS, research iterating on HWV design

Existing ISAs no good (complex, proprietary, legacy)
Goal define clean-slate ISA

Substrate for future research
Teac h i ng arc h iteCtU re/S)’Ste ms Design of the RISC-V Instruction Set Architecture

Andrew Waterman, Yunsup Lee
Dave Patterson, Krste Asanovic

Andrew Waterman

.
o
[Y
i3
EA
s '.
- A

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-1
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html|

January 3, 2016

https://people.eecs.berkeley.edu/~krste/papers/EECS-2016-1

.pdf

https://people.eecs.berkeley.edu/~krste/papers/EECS-2016-1.pdf

Design goals

“Universal”
Suitable for microcontrollers up to supercomputer
Data-informed
Benchmarks, measurements, 50 years of experience
Set footprint from intersection not union
Modular, extensible
Small standard base ISA
Defined extensions outside core
Opcode space for custom/specialized extension
Stable
Maintain backward compatibility (extensions frozen)
Evolve via additional extensions
Free & open
Allows collaboration, competition, innovation
Open cores -> secure & trustworthy, design your own

Interface/implementation

ISA

Externally visible aspects
registers, instructions, data types, control/exceptions
Huge value of standard, no IP hurdles

Microarchitecture
Implementation of ISA
Logic design, power/performance tradeoffs
Room for innovation, competition
e.g. Intel & AMD both implement x86, but very different
microarchitectures

Abstraction for the win!

RISC-V today and tomorrow

Standalone ML
Computer

Picoclick C3T 7
(I0T button) SparkFun Red-V
(Arduino/hobbyist)

HiFive Unmatched

MangoPi SBC (1linux desktop) e S0t
(~Rpi) + 100085 TFLOPS
Big players paying attention ! Tenstorrent Pt
» 32 lanes of PCIE Gen5
(HPC AI/ML)

MIPS eVocore

Samsung/LG smart TVs

Intel Horse Creek
Qualcomm+Android wearables ...

Open software/standards success stories
|IEEE 754, Ethernet, Linux, SQL, FSE OpenGlL, ...

What will be effect of open ISA?
More: collaboration, competition, innovation

How to understand an ISA

We want to learn how processors represent and execute
instructions.

One means of learning an ISA is to follow the data paths
in the "floor plan".

Tracing that paths shows where information can flow
from/to and how that dictates the operational behavior

Visualizer/simulator can be helpful! https://ripes.me

https://ripes.me

RISC-V Architecture / Floor Plan

D__

PC = program counter

pc

XLEN

- Op1
Registers
Instr. Data in Reg 1
Wrid
memory Decode R1r :d;: > ALU Res Addr Data out
PC Addr Instr R2 idx Reg 2
A opcode W Op2 Data
= memory
Datain
Wr
Imm. Branch =
Branch
taken
s https://ripes.me/
=
x3
x4
x5
x6
l x7
x8
Fetch Instruction o
1 o
x13
Decode Instruction e
I e
R x18
Execute Instruction o .
| = 32 registers (x0-x31)
ot
x25
x26
x27
x28
x29
x30
x31
XLEN
XLEN-1

Data paths == operational constraints

and x13 x13x12

and a3,a3,a2

What are possible inputs to ALU!?
Where does result go?

addi x10 x0 2

addi a2, zero,2

Where does an immediate value come from?
Where can it flow to?

Example ALU instructions

add rd,rs1,rs2
sub rd,rsi1,rs2
and rd,rs1,rs2
or rd,rs1,rs2
sll rd,rsi1,rs2
srl rd,rs1,rs2
R-type (three registers: dest, sourcel, source2)

addi rd,rs,imm12
andi rd,rs,imm12
ori rd,rs,imm12
slli rd,rs,imm12
I-type (source2 is immediate/constant)

More at https://cs107e.github.io/guides/riscv-onepage/

https://cs107e.github.io/guides/riscv-onepage/

Challenge for you all:

Write an assembly program to count the "on" bits in
a given numeric value

11 a@, some-number
11 a1, ©

// a0 initialized to input value
// use al to store count of "on" bits in value

Ripes visual simulator

= IR 100ms |3 »

10 . . . =
1010 Source code Input type: @ Assembly C Executable code View mode: O Binary @ Disassembled & | @ gpr
1
gditor . .
1 1i a0, 67 0: 04300513 addi x10 x0 67 7 2
2 1i al, 0 4: 00000593 addi x11 x0 0 Name Alias Value
ol 3 loop: 0x00000000
Processor 4 andi a2,a0,1 00000008 <loop>:
5 add al,al,a2 8: 00157613 andi x12 x10 1 x1 ra 0x00000000
. 6 srli a0,a0,1 c: 00c585b3 add x11 x11 x12
7 bne a0,x0,loop 10: 00155513 srli x10 x10 1 X2 Sp Ox7ffffffo
8 14: fe@51ae3 bne x10 x0 -12 <loop>
x3 gp | 0x10000000
Memory x4 tp 0x00000000
’ x5 t0 0x00000000
I
1/0 X6 tl 0x00000000

x7 t2 0x00000000
x8 sO 0x00000000
x9 sl | 0x00000000
x10 a0 0x00000000
x11 al 0x00000003

¥1?2 a2 NxNNNANNN1 b

Try it yourself! https://ripes.me

https://ripes.me

Instruction encoding

Another way to understand the design of an ISA is to
look at how the bits are used in the instruction
encoding.

RISC-V uses 32-bit instructions. Packing all
functionality into a 32-bits encoding necessitates
trade-offs and careful design.

RISC-V instruction encoding

32-bit RISC-V instruction formats

Format ot
31 /30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 /12|11 109 8 7 6 5 /4 3|2 1|0
Register/register funct7 rs2 rsi funct3 rd opcode
Immediate imm[11:0] rsi funct3 rd opcode
Store imm[11:5] rs2 rsi funct3 imm[4:0] opcode
Branch [12] imm[10:5] rs2 rsi funct3 imm[4:1] [11] opcode
Upper immediate imm([31:12] rd opcode
Jump [20] imm[10:1] [11] imm[19:12] rd opcode

e opcode (7 bits): Partially specifies one of the 6 types of instruction formats.

e funct7 (7 bits) and funct3 (3 bits): These two fields extend the opcode field to specify the operation to be performed.

e rs1 (5 bits) and rs2 (5 bits): Specify, by index, the first and second operand registers respectively (i.e., source registers).
e rd (5 bits): Specifies, by index, the destination register to which the computation result will be directed.

6 instruction types
Regularity in bit placement to ease decoding
Sparse instruction encoding (room for growth)

31

27 26 25

24

ALU en

14 12

codi

ng

6

funct7

rs2

rsl

funct3

rd

opcode

x3,x1,x2

0000000

rs2

rsl

000

rd

0110011

0

000

10
2

0

000
0

8

0

001

1

B

R-type

ADD

Immediate encodlng

31 27 26 25 24 20 19 15 14 12 11

funct7 rs2 rsl funct3 rd opcode R-type
imm|[11:0] rsl funct3 rd opcode I-type
imm|11:0] rsl 000 rd 0010011 ADDI
imm][11:0] rsl 010 rd 0010011 | SLTI
fmm[11:0] rs1 011 rd 0010011 | SLTIU
imm|11:0] rsl 100 rd 0010011 XORI
imm[11:0] rsl 110 rd 0010011 ORI
imm|[11:0 rsl 111 rd 0010011 ANDI

Your turn! a0, zero, 21

0000000101010000000001010001
e 1 5 @ o 5 1 3

Key concepts so far

Bits are bits; bitwise operations

Memory addresses (64-bits) index by byte (8-bits), word is 4 bytes
Memory stores both instructions and data

Computers repeatedly fetch, decode, and execute instructions
RISC-V instructions: ALU, load/store, branch

Resources to keep handy
RISC-V one-page guide

Ripes simulator

