
Admin

Lab0 ✅
Assign0
Ed forum
OH coming soon to calendar

Today: RISC-V ISA

Historical milestones in computer architecture

Origins of RISC-V

RISC-V instruction set architecture

We are here!

Whirlwind history tour
Mainframe era (50s,60s)
 IBM had 4 incompatible lines of computers
 System/360: one ISA to rule them all (backward
 compatibility becomes a thing...) now oldest surviving ISA
 DEC PDP-8 -> PDP-11 -> Vax (Bell Labs, unix)
 ISA prioritize assembly programmer

Personal desktop computer
 Intel iAPX 432 6+ year visionary failure (32-bit, OO, Ada)

 8086 stopgap developed 1 year (16-bit 8Mhz 29K transistors)
 Increasing use of HLL, compiler

Moore's Law
 Count of transistors in IC doubles every 2 years

Progression, Moore’s law

The “semantic gap”

Gap between HL languages and machine code
 One HL construct = many machine instructions

Improve performance of compiled code by adding fancier machine
instructions (procedure calls, array access, etc)?

CISC (complex instruction set computer)
 Insns to match HL can be complex to implement in hardware

But... researchers in 70s work out:
 Compilers mostly don't emit the complex instructions
 Avoid special cases, sequence of simple ops often faster anyway
 Real-world programs spend most of their time executing simple ops
 Complex ops slow down execution, even when you don't use them

From CISC to RISC
Hennessy & Patterson 1982 MIPS
 (microprocessor w/o interlocked pipeline stages)
RISC reduce footprint, small number of simple ops

Many advantages to keeping base simple
 Simpler to design/verify
 Lower costs (die area, higher yield, energy consumption)
 Enable pipelined implementation
 Higher throughput (faster clock, fewer cycles per ins)
 Don't pay for what you don't use

void set(int arr[], int i, int val) {

 arr[i] = val;

}

Assembly examples

0:	 e7802101 	str 	 r2, [r0, r1, lsl #2]

4:	 e12fff1e 	 bx	 lr

0:	8914b7 movl	 %edx, (%rdi,%rsi,4)

3:	c3 retq

 0:	00259593 sll	a1,a1,0x2

 4:	00b50533 add	a0,a0,a1

 8:	00c52023 sw	 a2,0(a0)

 c:	00008067 ret

ARM

x86

rv

C code

1500 instr, 5000 pp

500 instr, 1200 pp

40 instr, 220 pp

Size of entire ISA

LDMIAEQ SP!, {R4-R7, PC}

x86 puts the
C in CISC

arm is RISC
but …

RISC-V origins
2010 Cal EECS, research iterating on HW design
 Existing ISAs no good (complex, proprietary, legacy)
 Goal define clean-slate ISA
 Substrate for future research

Teaching architecture/systems

Andrew Waterman, Yunsup Lee
Dave Patterson, Krste Asanovic

https://people.eecs.berkeley.edu/~krste/papers/EECS-2016-1.pdf

https://people.eecs.berkeley.edu/~krste/papers/EECS-2016-1.pdf

Design goals
"Universal"
Suitable for microcontrollers up to supercomputer

Data-informed
 Benchmarks, measurements, 50 years of experience
 Set footprint from intersection not union
Modular, extensible
Small standard base ISA
Defined extensions outside core
Opcode space for custom/specialized extension

Stable
Maintain backward compatibility (extensions frozen)
Evolve via additional extensions

Free & open
Allows collaboration, competition, innovation

 Open cores -> secure & trustworthy, design your own

Interface/implementation
ISA
 Externally visible aspects
 registers, instructions, data types, control/exceptions
 Huge value of standard, no IP hurdles

Microarchitecture
 Implementation of ISA
 Logic design, power/performance tradeoffs
 Room for innovation, competition

e.g. Intel & AMD both implement x86, but very different
microarchitectures

Abstraction for the win!

RISC-V today and tomorrow

SparkFun Red-V
(Arduino/hobbyist)

MangoPi SBC

(~Rpi)

HiFive Unmatched

(linux desktop)

Picoclick C3T

(IOT button)

Tenstorrent

(HPC AI/ML)

Big players paying attention !

MIPS eVocore
 Samsung/LG smart TVs
 Intel Horse Creek
 Qualcomm+Android wearables ...

Open software/standards success stories
 IEEE 754, Ethernet, Linux, SQL, FSF, OpenGL, ...

What will be effect of open ISA?
 More: collaboration, competition, innovation

How to understand an ISA

We want to learn how processors represent and execute
instructions.

One means of learning an ISA is to follow the data paths
in the "floor plan".

Tracing that paths shows where information can flow
from/to and how that dictates the operational behavior

Visualizer/simulator can be helpful! https://ripes.me

https://ripes.me

RISC-V Architecture / Floor Plan

https://ripes.me/

32 registers (x0-x31)

PC = program counter

Data paths == operational constraints

Where does an immediate value come from?
Where can it flow to?

addi a2,zero,2

and a3,a3,a2

What are possible inputs to ALU?
Where does result go?

Example ALU instructions
add rd,rs1,rs2

sub rd,rs1,rs2

and rd,rs1,rs2

or rd,rs1,rs2

sll rd,rs1,rs2

srl rd,rs1,rs2

 R-type (three registers: dest, source1, source2)

addi rd,rs,imm12

andi rd,rs,imm12

ori rd,rs,imm12

slli rd,rs,imm12

 I-type (source2 is immediate/constant)

More at https://cs107e.github.io/guides/riscv-onepage/

https://cs107e.github.io/guides/riscv-onepage/

Challenge for you all:

Write an assembly program to count the "on" bits in
a given numeric value

li a0, some-number

li a1, 0

// a0 initialized to input value

// use a1 to store count of "on" bits in value

Ripes visual simulator

Try it yourself! https://ripes.me

https://ripes.me

Instruction encoding

Another way to understand the design of an ISA is to
look at how the bits are used in the instruction
encoding.

RISC-V uses 32-bit instructions. Packing all
functionality into a 32-bits encoding necessitates
trade-offs and careful design.

RISC-V instruction encoding

6 instruction types
Regularity in bit placement to ease decoding
Sparse instruction encoding (room for growth)

ALU encoding

add x3,x1,x2

0000000 000 0110011
 0 0 2 0 8 1 B 3
 0001000001 00011

Immediate encoding

addi a0,zero,21

 000 0010011
 0 1 5 0 0 5 1 3
00000001010100000 01010

Your turn!

Key concepts so far
Bits are bits; bitwise operations

Memory addresses (64-bits) index by byte (8-bits), word is 4 bytes

Memory stores both instructions and data

Computers repeatedly fetch, decode, and execute instructions

RISC-V instructions: ALU, load/store, branch

Resources to keep handy

RISC-V one-page guide

Ripes simulator

