
Admin
Lab0 ✅
Assign0
OH added to calendar
Ed forum
Discord?

Today: Let there be light!
More on RISC-V assembly, instruction encoding

Peripheral access through memory-mapped registers

Goal: blink an LED

Load and store operations

sw a1,0x30(a0)

Offset expressed as immediate,
add to base to compute memory address

lw a2,0x40(a0)

Understanding an ISA
We want to learn how processors represent and
execute instructions.

One means of learning an ISA is to follow the data
paths in the "floor plan"

Another is to look at how the bits are used in the
instruction encoding. RISC-V uses 32-bit instructions.
Packing all functionality into a 32-bits encoding
necessitates trade-offs and careful design.

RISC-V Instruction Encoding

add x3,x1,x2

0000000 000 0110011
 0 0 2 0 8 1 B 3
 0001000001 00011

Immediate encoding

addi a0,zero,21

 000 0010011
 0 1 5 0 0 5 1 3
00000001010100000 01010

Your turn!

$ riscv64-unknown-elf-as add.s -o add.o

$ ls -l add.o
928 add.o

$ riscv64-unknown-elf-objcopy add.o add.bin -O binary

$ ls -l add.bin
4 add.bin

$ hexdump -C add.bin
00000000 b3 81 20 00

Know your tools: assembler

The assembler reads assembly instructions (text) and outputs as
machine-code (binary). The reverse process is called disassembly

These translations are fairly mechanical

01 50 05 13

13
05
50
01

ADDR

ADDR+1

ADDR+2

ADDR+3

little-endian
(LSB first)

most-significant-byte (MSB)

least-significant-byte (LSB)

RISC-V uses little-endian

Read: Holy Wars and a Plea For Peace, D. Cohen

The 'little-endian' and 'big-endian' terminology which is used to denote the two approaches
[to addressing memory] is derived from Swift's Gulliver s Travels. The inhabitants of Lilliput,
who are well known for being rather small, are, in addition, constrained by law to break their
eggs only at the little end. When this law is imposed, those of their fellow citizens who prefer
to break their eggs at the big end take exception to the new rule and civil war breaks out. The
big-endians eventually take refuge on a nearby island, which is the kingdom of Blefuscu. The
civil war results in many casualties.

Computers have peripherals
that interface to the world

GPIO pins are peripherals

Let's learn how to control a GPIO pin with code!

Let there be light

Mango Pi GPIO

D1-H User Manual p.1083

https://cs107e.github.io/readings/d1-h_user_manual_v1.0.pdf#page=1083

Connect LED to GPIO PB0

1 -> 3.3V
0 -> 0.0V (GND)

Memory Map

Peripheral registers are mapped
into address space

Read/write to these addresses
controls peripheral

Memory-Mapped IO
(MMIO)

0x20000000

Ref: D1-H User Manual p.45

...
CCU
PWM
GPIO

https://cs107e.github.io/readings/d1-h_user_manual_v1.0.pdf#page=45

Ref: D1-H User Manual p.1093

Configure register used to
set pin function

Data register used to read/
write pin value

https://cs107e.github.io/readings/d1-h_user_manual_v1.0.pdf#page=1093

GPIO Configure Register

4 bits per GPIO pin

8 pins configured
in each 32-bit register

Select pin function from 16 options:
 Input (0), Output (1),
 Alt2-Alt8, 9-13 reserved,
 Interrupt (14), Disabled (15)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

{

 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

{{{{{{{
PB Config0 @0x2000030

Ref: D1-H User Manual p.1097

https://cs107e.github.io/readings/d1-h_user_manual_v1.0.pdf#page=1097

GPIO Data Register

1 bit per GPIO pin

Value is 1 if high, 0 low

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PB12 PB0

PB Data @0x2000040

Ref: D1-H User Manual p.1098

https://cs107e.github.io/readings/d1-h_user_manual_v1.0.pdf#page=1098

BOOTROM of Mango Pi runs "FEL" by default
(Firmware Exchange Loader)
FEL listens on USB port for commands
Run xfel on your laptop to talk to FEL on Pi

Can peek and poke to memory addresses!
$ xfel write32 0x02000030 0x1
$ xfel write32 0x02000040 0x1

Using xfel

config PB0 as output, PB CFG0 @ 0x2000030

lui a0,0x2000 # GPIO base address
addi a1,zero,1 # 1 for output
sw a1,0x30(a0) # store to PB config0

set PB0 value to 1, PB data @ 0x2000040

sw a1,0x40(a0) # turn on PB0

loop forever
loop:
 j loop

on.s

$ riscv64-unknown-elf-as on -o on.o

$ riscv64-unknown-elf-objcopy on.o on.bin -O binary

$ mango-run on.bin
 xfel ddr d1
 xfel write 0x40000000 on.bin
 xfel exec 0x40000000

Build and execute

 lui a0,0x2000
 addi a1,zero,1
 sw a1,0x30(a0) # config PB0 as output

loop:
 xori a1,a1,1 # xor ^ 1 invert bit 0
 sw a1,0x40(a0) # flip bit on<->off

 lui a2,0x3f00 # busy loop wait
 delay:
 addi a2,a2,-1
 bne a2,zero,delay

 j loop # repeat forever

blink.s

Key concepts so far
Bits are bits; bitwise operations

Memory addresses (64-bits) refer to bytes (8-bits), words are
4 bytes

Memory stores both instructions and data

Computers repeatedly fetch, decode, and execute instructions

RISC-V instructions: ALU, load/store, branch

General purpose IO (GPIO), peripheral registers, MMIO

Resources to keep handy
D1-H User Manual

Mango Pi pinout

RISC-V Instruction Set Manual

Ripes simulator

