
The Magic of Systems

 1

How Do We Multitask?

2

What is a Process?

3

What is a Process?
r0

r1

r2

• • •

r28

r29

r30

r31

Registers

+

Stack

Heap

Memory

Code

4

Execution Context
r0

r1

r2

• • •

r28

r29

r30

r31

Registers

+

Stack

Heap

Memory

Code

5

we want to “snapshot” our process

6

Stack

Heap

r0

r1

r2

• • •

r28

r29

r30

r31

Registers Memory

Code

7

Stack

Heap

Memory

Code

Registerssp

8

pid: 27
sp: 0x50f480
pc: 0x004ff0
heap end: 0x10fb0
…

Process Control Block

9

pid: 27
sp: 0x50f480
pc: 0x004ff0
heap end: 0x10fb0
…

Process Control BlockStack

Heap

Memory

Code

0xb00000

10

Context Switch

11

Context Switch

• Tricky to get right  

• Has to be written in assembly 

• Non trivial overhead - more later

12

But what if the program doesn’t run context
switch?

13

14

Preemption

• Use a timer interrupt to regain control

• Register context switch as your interrupt handler

15

Who do we switch to?

16

Thread Schedulers

17

Thread Schedulers

• Not itself a process, just a bit of code to determine who runs next 

• Very interesting problem, lots of solutions, needs to be fast 

• Latency vs Throughput

18

Thread Schedulers: Round Robin

19

• • •P1 P2 P3 P1 P2 P3 P1 P2 P3

Time

Latency vs Throughput

20

Latency vs Throughput

21

• • •P1

Time

Perfect Throughput

22

• • •P1 P2 P3 P1

Time

P2 P3 P1 P2 P3 P1 P2 P3 P1

Low Latency[P3 Latency

Latency vs Throughput

23

• • •P1 P2

Time

P1 P2 P3

Dynamic

Latency vs Throughput

Sorry I lied a bit

24

Sorry I lied a bit

25

pid: 27
sp: 0x50f480
pc: 0x004ff0
heap end: 0x10fb0
…

Process Control BlockStack

Heap

Memory

Code

0xb00000

Sorry I lied a bit

26

P1 Stack

P2 Heap

Memory

P2 Stack

P1 HeapX

Lets not support all our programs in the
same address space

27

what memory do we really need?

28

Memory
29

30

Working Set

we want to support only the memory being
used

31

Virtual Memory

32

Virtual Memory

33

Virtual Memory

34

• We have two address spaces,

• the program’s (virtual) and the machine’s (physical)

• We map pages (4KB) of virtual memory to physical pages as needed

Virtual Memory

35

• We have two address spaces,

• the program’s (virtual) and the machine’s (physical)

• We map pages (4KB) of virtual memory to physical pages as needed

• Store these mappings in a Page Table, one Page Table per process

• Use interrupts (Page Faults) to service this

Memory

36

a

Page Table

0x0ffa42c0
Page Fault

0x0ffa4000 0x01af7000

Virtual Physical

Memory

37

a

Page Table

Page Fault

0x0ffa4000 0x01af7000

Virtual Physical

VA PA

Memory

38

a

Page Table

0x0ffa4000 0x01af7000

Virtual Physical

VA PAPage Fault

Aren’t all those page faults really annoying?

39

Translation Lookaside Buffer (TLB)

40

• Hardware implemented buffer

• Holds recently used page mappings, so you don’t have to take a page fault

• Really speeds things up!

• Needs to be flushed when we swap programs

Translation Lookaside Buffer (TLB)

41

• Hardware implemented buffer

• Holds recently used page mappings, so you don’t have to take a page fault

• Really speeds things up!

• Needs to be flushed when we swap programs

An aside on caching

42

• Memory is slow, really far away from processor

• Keep a copy of the most frequently used stuff close to the processor

Pause for Questions

43

The Abstractions we have so far

44

The Abstractions we have so far

45

• Infinite computing resources - multithreading and thread scheduler

The Abstractions we have so far

46

• Infinite computing resources - multithreading and thread scheduler

• Infinite memory - virtual memory

Creating an OS

47

Creating an OS

48

Operating System

(Kernel)

User Space

Creating an OS

49

Operating System

(Kernel)

User Space

Device Drivers Thread SchedulerNetworking Stack

User Programs Libraries

File Management

Creating an OS

How do we enforce this line in the sand?

System Calls

51

System Calls

52

• The OS’s api to its users. Functions like sbrk, open, fork

• Use software interrupts to ensure correct privileges

• Machine mode vs User mode

Page Protection

53

• Our virtual memory provides a powerful abstraction

• Placing our code between arbitrary code and memory

• Can mark pages as read only, execute only, etc.

I call that a success

54

Whats Next in the Systems Track

55

