
The Magic of Systems
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How Do We Multitask?

2



What is a Process?
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we want to “snapshot” our process
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pid: 27 
sp: 0x50f480 
pc: 0x004ff0 
heap end: 0x10fb0 
…

Process Control Block
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Context Switch
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Context Switch

• Tricky to get right  

• Has to be written in assembly 

• Non trivial overhead - more later
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But what if the program doesn’t run context 
switch?
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Preemption

• Use a timer interrupt to regain control

• Register context switch as your interrupt handler 
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Who do we switch to? 
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Thread Schedulers
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Thread Schedulers

• Not itself a process, just a bit of code to determine who runs next 

• Very interesting problem, lots of solutions, needs to be fast 

• Latency vs Throughput
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Thread Schedulers: Round Robin 
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Latency vs Throughput 
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Latency vs Throughput
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Sorry I lied a bit
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Sorry I lied a bit
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Sorry I lied a bit
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Lets not support all our programs in the 
same address space
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what memory do we really need?
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Memory
29
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Working Set



we want to support only the memory being 
used
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Virtual Memory
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Virtual Memory
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Virtual Memory

34

• We have two address spaces, 


• the program’s (virtual) and the machine’s (physical)


• We map pages (4KB) of virtual memory to physical pages as needed



Virtual Memory
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• We have two address spaces, 


• the program’s (virtual) and the machine’s (physical)


• We map pages (4KB) of virtual memory to physical pages as needed


• Store these mappings in a Page Table, one Page Table per process


• Use interrupts (Page Faults) to service this



Memory
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Aren’t all those page faults really annoying?
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Translation Lookaside Buffer (TLB) 
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• Hardware implemented buffer


• Holds recently used page mappings, so you don’t have to take a page fault


• Really speeds things up! 


• Needs to be flushed when we swap programs 
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• Hardware implemented buffer


• Holds recently used page mappings, so you don’t have to take a page fault


• Really speeds things up! 


• Needs to be flushed when we swap programs 



An aside on caching 
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• Memory is slow, really far away from processor 


• Keep a copy of the most frequently used stuff close to the processor



Pause for Questions
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The Abstractions we have so far
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The Abstractions we have so far
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• Infinite computing resources - multithreading and thread scheduler



The Abstractions we have so far
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• Infinite computing resources - multithreading and thread scheduler


• Infinite memory - virtual memory



Creating an OS
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Creating an OS
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Operating System 

(Kernel)
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Creating an OS
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Creating an OS

How do we enforce this line in the sand?



System Calls
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System Calls
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• The OS’s api to its users. Functions like sbrk, open, fork


• Use software interrupts to ensure correct privileges


• Machine mode vs User mode 



Page Protection
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• Our virtual memory provides a powerful abstraction


• Placing our code between arbitrary code and memory


• Can mark pages as read only, execute only, etc.



I call that a success
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Whats Next in the Systems Track
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